metabelian, supersoluble, monomial
Aliases: C3⋊C8⋊4Dic3, C2.4Dic32, C12.98(C4×S3), C3⋊1(C24⋊C4), (C3×C6).9C42, C6.4(C4×Dic3), C6.1(C8⋊S3), C32⋊4(C8⋊C4), (C2×C12).294D6, C62.24(C2×C4), C4.21(S3×Dic3), (C3×C6).4M4(2), C12.32(C2×Dic3), (C6×C12).199C22, C2.1(C12.31D6), C22.8(C6.D6), (C3×C3⋊C8)⋊7C4, (C2×C3⋊C8).8S3, (C2×C4).127S32, (C6×C3⋊C8).19C2, (C2×C6).26(C4×S3), (C3×C12).84(C2×C4), (C2×C3⋊Dic3).7C4, (C4×C3⋊Dic3).10C2, SmallGroup(288,203)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2.Dic32
G = < a,b,c,d | a12=c3=1, b4=a6, d2=a9, bab-1=a5, ac=ca, ad=da, bc=cb, dbd-1=a6b, dcd-1=c-1 >
Subgroups: 266 in 95 conjugacy classes, 48 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C8, C2×C4, C2×C4, C32, Dic3, C12, C12, C2×C6, C2×C6, C42, C2×C8, C3×C6, C3×C6, C3⋊C8, C24, C2×Dic3, C2×C12, C2×C12, C8⋊C4, C3⋊Dic3, C3×C12, C62, C2×C3⋊C8, C4×Dic3, C2×C24, C3×C3⋊C8, C2×C3⋊Dic3, C6×C12, C24⋊C4, C6×C3⋊C8, C4×C3⋊Dic3, C2.Dic32
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C42, M4(2), C4×S3, C2×Dic3, C8⋊C4, S32, C8⋊S3, C4×Dic3, S3×Dic3, C6.D6, C24⋊C4, C12.31D6, Dic32, C2.Dic32
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 60 93 22 7 54 87 16)(2 53 94 15 8 59 88 21)(3 58 95 20 9 52 89 14)(4 51 96 13 10 57 90 19)(5 56 85 18 11 50 91 24)(6 49 86 23 12 55 92 17)(25 38 67 80 31 44 61 74)(26 43 68 73 32 37 62 79)(27 48 69 78 33 42 63 84)(28 41 70 83 34 47 64 77)(29 46 71 76 35 40 65 82)(30 39 72 81 36 45 66 75)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)(49 53 57)(50 54 58)(51 55 59)(52 56 60)(61 69 65)(62 70 66)(63 71 67)(64 72 68)(73 77 81)(74 78 82)(75 79 83)(76 80 84)(85 93 89)(86 94 90)(87 95 91)(88 96 92)
(1 77 10 74 7 83 4 80)(2 78 11 75 8 84 5 81)(3 79 12 76 9 73 6 82)(13 67 22 64 19 61 16 70)(14 68 23 65 20 62 17 71)(15 69 24 66 21 63 18 72)(25 60 34 57 31 54 28 51)(26 49 35 58 32 55 29 52)(27 50 36 59 33 56 30 53)(37 86 46 95 43 92 40 89)(38 87 47 96 44 93 41 90)(39 88 48 85 45 94 42 91)
G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,60,93,22,7,54,87,16)(2,53,94,15,8,59,88,21)(3,58,95,20,9,52,89,14)(4,51,96,13,10,57,90,19)(5,56,85,18,11,50,91,24)(6,49,86,23,12,55,92,17)(25,38,67,80,31,44,61,74)(26,43,68,73,32,37,62,79)(27,48,69,78,33,42,63,84)(28,41,70,83,34,47,64,77)(29,46,71,76,35,40,65,82)(30,39,72,81,36,45,66,75), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,93,89)(86,94,90)(87,95,91)(88,96,92), (1,77,10,74,7,83,4,80)(2,78,11,75,8,84,5,81)(3,79,12,76,9,73,6,82)(13,67,22,64,19,61,16,70)(14,68,23,65,20,62,17,71)(15,69,24,66,21,63,18,72)(25,60,34,57,31,54,28,51)(26,49,35,58,32,55,29,52)(27,50,36,59,33,56,30,53)(37,86,46,95,43,92,40,89)(38,87,47,96,44,93,41,90)(39,88,48,85,45,94,42,91)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,60,93,22,7,54,87,16)(2,53,94,15,8,59,88,21)(3,58,95,20,9,52,89,14)(4,51,96,13,10,57,90,19)(5,56,85,18,11,50,91,24)(6,49,86,23,12,55,92,17)(25,38,67,80,31,44,61,74)(26,43,68,73,32,37,62,79)(27,48,69,78,33,42,63,84)(28,41,70,83,34,47,64,77)(29,46,71,76,35,40,65,82)(30,39,72,81,36,45,66,75), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,93,89)(86,94,90)(87,95,91)(88,96,92), (1,77,10,74,7,83,4,80)(2,78,11,75,8,84,5,81)(3,79,12,76,9,73,6,82)(13,67,22,64,19,61,16,70)(14,68,23,65,20,62,17,71)(15,69,24,66,21,63,18,72)(25,60,34,57,31,54,28,51)(26,49,35,58,32,55,29,52)(27,50,36,59,33,56,30,53)(37,86,46,95,43,92,40,89)(38,87,47,96,44,93,41,90)(39,88,48,85,45,94,42,91) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,60,93,22,7,54,87,16),(2,53,94,15,8,59,88,21),(3,58,95,20,9,52,89,14),(4,51,96,13,10,57,90,19),(5,56,85,18,11,50,91,24),(6,49,86,23,12,55,92,17),(25,38,67,80,31,44,61,74),(26,43,68,73,32,37,62,79),(27,48,69,78,33,42,63,84),(28,41,70,83,34,47,64,77),(29,46,71,76,35,40,65,82),(30,39,72,81,36,45,66,75)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48),(49,53,57),(50,54,58),(51,55,59),(52,56,60),(61,69,65),(62,70,66),(63,71,67),(64,72,68),(73,77,81),(74,78,82),(75,79,83),(76,80,84),(85,93,89),(86,94,90),(87,95,91),(88,96,92)], [(1,77,10,74,7,83,4,80),(2,78,11,75,8,84,5,81),(3,79,12,76,9,73,6,82),(13,67,22,64,19,61,16,70),(14,68,23,65,20,62,17,71),(15,69,24,66,21,63,18,72),(25,60,34,57,31,54,28,51),(26,49,35,58,32,55,29,52),(27,50,36,59,33,56,30,53),(37,86,46,95,43,92,40,89),(38,87,47,96,44,93,41,90),(39,88,48,85,45,94,42,91)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6F | 6G | 6H | 6I | 8A | ··· | 8H | 12A | ··· | 12H | 12I | 12J | 12K | 12L | 24A | ··· | 24P |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 8 | ··· | 8 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 1 | 1 | 1 | 1 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | ··· | 6 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | - | + | + | - | + | |||||||
image | C1 | C2 | C2 | C4 | C4 | S3 | Dic3 | D6 | M4(2) | C4×S3 | C4×S3 | C8⋊S3 | S32 | S3×Dic3 | C6.D6 | C12.31D6 |
kernel | C2.Dic32 | C6×C3⋊C8 | C4×C3⋊Dic3 | C3×C3⋊C8 | C2×C3⋊Dic3 | C2×C3⋊C8 | C3⋊C8 | C2×C12 | C3×C6 | C12 | C2×C6 | C6 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 8 | 4 | 2 | 4 | 2 | 4 | 4 | 4 | 16 | 1 | 2 | 1 | 4 |
Matrix representation of C2.Dic32 ►in GL6(𝔽73)
27 | 0 | 0 | 0 | 0 | 0 |
0 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 1 | 0 | 0 | 0 | 0 |
46 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 0 | 0 | 0 |
0 | 0 | 0 | 46 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
49 | 71 | 0 | 0 | 0 | 0 |
19 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(73))| [27,0,0,0,0,0,0,27,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[0,46,0,0,0,0,1,0,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[49,19,0,0,0,0,71,24,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C2.Dic32 in GAP, Magma, Sage, TeX
C_2.{\rm Dic}_3^2
% in TeX
G:=Group("C2.Dic3^2");
// GroupNames label
G:=SmallGroup(288,203);
// by ID
G=gap.SmallGroup(288,203);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,253,92,100,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^12=c^3=1,b^4=a^6,d^2=a^9,b*a*b^-1=a^5,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^6*b,d*c*d^-1=c^-1>;
// generators/relations